PHYSICAL REVIEW E

VOLUME 48, NUMBER 2

AUGUST 1993

Macroscopic description of the kinetics of swelling for a cross-linked elastomer or a gel

Giuseppe Rossi and Ken A. Mazich*
Ford Research Laboratory, Mail Drop 3198, Ford Motor Company, P.O. Box 2053, Dearborn, Michigan 48121-2053
(Received 22 June 1992)

We consider the diffusion of a solvent in a cross-linked polymer network and the corresponding swell-
ing and deswelling. Recently, we obtained equations describing the time evolution of the concentration
profile of a polymer (or solvent) in one dimension and three dimensions with radial symmetry. In this
paper we discuss in detail the properties of these equations and the experimental predictions which can
be inferred from them. In particular, we find that a number of features commonly regarded as a signa-
ture for anomalous or “non-Fickian” behavior, can in fact be found as a consequence of Fick’s law once
the presence of moving boundaries is properly taken into account. We briefly discuss the problems asso-
ciated in extending our treatment to a general two- or three-dimensional geometry and its possible use in
interpreting the surface morphologies and fracture behavior observed in the swelling process.

PACS number(s): 61.25.Hq, 05.70.Ln, 82.70.Gg, 61.41.+¢

I. INTRODUCTION

Swelling of a cross-linked elastomer or a gel immersed
in a good solvent is a common phenomenon. Both the
equilibrium properties of the swollen specimen and the
kinetics of the swelling process have been studied since
the early days of polymer science [1-5]. Flory and
Rehner first obtained predictions for the equilibrium
swelling concentration by minimizing an appropriate
free-energy function. Their method amounts to balanc-
ing the (local) osmotic pressure with the elastic reaction
exerted by the swollen network: the method has been
generalized to deal with a number of situations involving
constrained specimens [6—8]. The microscopic parame-
ters controlling the equilibrium swelling concentration
are the degree of cross linking and the quality of the sol-
vent: the latter can be a function of temperature, pres-
sure, and other physical parameters. Several experiments
in the past decade have been aimed at determining the
response of the equilibrium concentration to changes in
these parameters [9—-13].

Experiments dealing with the kinetics of the swelling
process have uncovered a varied phenomenology, whose
interpretation presents challenging theoretical problems.
In a number of instances, during the swelling process,
surface patterns have been observed to form on an initial-
ly smooth rubber or gel specimen [14-16]. Often these
patterns disappear before the final equilibrium state is
reached. This behavior is reminiscent of surface morpho-
logies observed upon swelling in photographic emulsions
[17,18]. While pattern formation seems to be widespread
and has been seen both in loose gels and in dense rubbers,
it is by no means a general phenomenon: often no visible
patterns are observed and the surface of the swelling
specimen appear to remain smooth throughout the swell-
ing process. A further finding of obvious practical im-
portance has been the observation that in some instances
mechanical deformations induced in the network in the
course of swelling (or deswelling) cause irreversible
modifications, i.e., microscopic and large scale fracture,
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in the elastomeric material. At this stage there appears
to be no simple empirical way to classify the conditions
leading to these effects, so that the need arises for a
theoretical framework able to describe the swelling (and
deswelling) kinetics. A correct description of the kinetics
is also needed in order to have consistent experimental
procedures to measure the phenomenological parameters
(diffusion coefficients) controlling swelling.

Our ultimate goal is a macroscopic theory of the kinet-
ics of swelling able to account for both the formation of
the observed surface patterns and the onset of fracture
in terms of a few phenomenological parameters, e.g.,
diffusion coefficient, elastic constants of the network, and
final equilibrium concentration of the polymer com-
ponent. A stability analysis of the differential equations
describing swelling within such a theory should provide
information as to the range of values of these parameters
for which surface patterns develop. Furthermore, a com-
parison of the calculated maximum stress arising in the
swelling material with the conditions for chain scission
within the network [8] may elucidate the circumstances
leading to fracture. Recent macroscopic theories of den-
dritic growth [19] have been successful in carrying out a
similar program to account for interface evolution and
sidebranching for an advancing solidification front.

In a recent Rapid Communication [20] we presented a
treatment which, under what we regard as a set of
reasonable assumptions, accounts for diffusion of solvent
in a swelling polymer network, e.g., for displacement of
the network as solvent moves in (or out). We were able
to write closed-form equations controlling the swelling
process and we showed how to obtain numerical solutions
for these equations. Our treatment is limited to situa-
tions where the swelling process can be described in
terms of a single space coordinate: it should be regarded
as a step towards the theoretical program outlined above.
In this paper we present a number of further results relat-
ing to the description put forward in Ref. [20].

This paper is organized as follows. In the next section
the closed-form equations of Ref. [20] are rederived and
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discussed. In Sec. III we discuss numerical solutions to
these equations for both swelling and deswelling. We ex-
amine the role played by a concentration dependence of
the diffusion coefficient. We also show that features of
the solvent uptake curves which are usually described as
“non-Fickian (e.g., “‘sigmoidal” uptake) can in fact be
found as a consequence of Fick’s law when the movement
of the network as solvent diffuses in is properly taken into
account. In the last section we give a brief discussion of
the problems encountered when one attempts to modify
our procedure to deal with situations where two or more
independent space coordinates are needed in order to de-
scribe the swelling process; we also address the issue of
dealing with the kinetics of constrained swelling.

II. EQUATIONS DESCRIBING
THE SWELLING PROCESS

The method given in Ref. [20] deals with the swelling
of a cross-linked polymer network using the same physi-
cal assumptions on which the ordinary diffusion equation
is based. These are (i) the validity of Fick’s phenomeno-
logical law of diffusion throughout the region of space
where polymer is present and (ii) the assumption that, at
the boundary of the region occupied by polymer, equilib-
rium is reached as soon as the polymer network is put in
contact with the solvent. Polymeric material is displaced
as solvent diffuses in the network: once the above physi-
cal assumptions have been agreed upon, the problem is
reduced to finding a way to describe consistently such
displacement and to deal with boundary conditions
which hold at the moving boundary of the region occu-
pied by polymer. Since the overall change in volume
upon mixing for the polymer plus solvent system is ordi-
narily very small [21] we neglect this effect altogether.
Indeed, here we shall deal with a model situation where
the density of the polymer p; and the density of the sol-
vent pg are fixed and are both equal to one, so that con-
centrations and volume fractions coincide. Denoting
with ¢g(x,t) and ¢z (x,t) the solvent and polymer con-
centration, respectively, the relation

¢S(x,t)+¢R(x,t)=1 (1)

has to be satisfied everywhere throughout the swelling
process.

Consider the one-dimensional (1D) problem. Let A4
and B be two markers attached to the network, located
respectively at x =x, and x =x,+Ax, at time ¢t =0, i.e.,
before the network begins to swell. At a later time ¢ after
the swelling process has begun the markers 4 and B
will have moved to new positions x =xy(x,,?) and
x =xp(xq,t)+Axg(xg,t), respectively. The increase in
the amount of solvent between 4 and B in the time be-
tween t and ¢ + At is

Apg(xg,t)Axy =At(net flux through 4
—net flux through B) . (2)

In order to satisfy conservation of mass for the polymer
and solvent component the change in distance between
the markers and the solvent and polymer concentrations

have to be related by
PrAxp =R Axg , (3)
(s T Ads)Ax g =TV Axp . (4)

Here Axy is the distance between 4 and B at time ¢ + At,
while ¢ (¢dg) and ¢F¥ (¢5V) are respectively the poly-
mer (solvent) concentrations between A4 and B at times ¢
and t +At¢.

Using (1) we obtain

Axp =Axg(1+Adg) (5)
and ignoring higher powers of A¢g, we find
¢5V =¢stdrlds . (6)
Then (2) can be rewritten in the form
net __
95 AL fs =— Aq:; (net flux through B
—net flux through 4), (7
so that in the continuum limit
Ods(xg,t) oF
ot =—dg(xg,?) axg (8)

which is the continuity equation written in the frame of
the moving network (¥ denotes the flux).

Next we use Fick’s law and assume that the flux ap-
pearing in Eq. (8) is proportional to the local gradient of
the concentration at time ¢. The proportionality constant
(diffusion coefficient) is in general a function of concen-
tration. Therefore

dsxp,t)
ar RR )

Ads(xg,t)
X D(¢S(XR,I))T . 9)

It is easy to see that the usual mutual diffusion coefficient
D, [22] is related to the diffusion coefficient D appearing
in Eq. (9) by [23]
D (¢5)= M . (10)
br
In order to deal with Eq. (9), we have found it con-
venient to employ a coordinate transformation from the
“running” coordinate x; to the Lagrangian coordinate
xo [24]: suppose that initially (#=0) our one-
dimensional network is located between —ay=x =a,.
At a later time ¢ a volume element Ax,, initially located at
x =x, will have moved to a new position x =xg(x,?)
and will occupy a volume Axg(x,,?) such that

dr(xg,)Axp(x,t)=AX, . (11)
Therefore xz and x are related by
X0 de
= —_— 12
xg(xq,t) fo b iort) (12)
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and using (1) we can rewrite (9) as

Adr(xp,1) %P (x0,1)
3 _¢R(x0’t)D(¢R)7ax%
g (xg,t) ?
2
tér(x0,1) l % ]
( (dr)) (13)
a¢R ¢R ¢R

This is the closed-form equation [25] controlling the
swelling process in one dimension: it describes the time
evolution of the polymer concentration ¢g(x,,?) in the
volume element which was initially located at x =x,.
Equation (13) is written in terms of the Lagrangian coor-
dinate x, so that the spatial domain over which it has to
be solved does not change with time.

The value of the network equilibrium swelling concen-
tration ®%$? enters our treatment through the boundary
conditions. For an initially unswollen network located
between —a, and a,, the appropriate boundary condi-
tions for Eq. (13) are ¢g(xy,2)=1 at t =0 for |x,| <a,
and ¢g(x4,t)=®EY at x,==+a, for all . Equation (13)
subject to these boundary conditions describes a process
in which a fraction (1—®%9) of the polymeric material
found initially between —a, and a, is depleted (changed
into solvent) with time, until as t— oo, ¢g(xy,2)—DEY
throughout the domain |x,| <a,.

An example of our procedure to obtain the time evolu-
tion of the concentration profiles is shown in Fig. 1. In
this case a swollen network initially found in the domain
|x| <a is deswelling from an initial concentration
®{V=0.4 to a final concentration ®§¥=0.8. We solve
Eq. (13) in the domain |x,| <a,, where a,=a®{, subject
to the boundary conditions ¢g(xq,2)=>% at ¢t =0 for
|xo| <ay and dg(xq,t)=DEY at xo==+a,. The solution
can be found numerically using an implicit finite
differences algorithm [26]. Five snapshots of ¢z (x,,?) at
different times are shown in the left portion of Fig. 1.
Once the solution ¢, (xy,¢) has been found, one can ob-
tain the actual (laboratory-frame) polymer concentration
profile by transforming back to the x =xy(x,?) coordi-
nate appropriate for time ¢ using Eq. (12). The right por-
tion of Fig. 1 shows the result of this transformation for
the solutions plotted on the left. Note that mass conser-
vation for the polymer implies that the area under the
curves on the right does not change with time.

From an experimental viewpoint the easiest quantity to
measure is solvent uptake, namely the difference M (7)
[27] between the volume occupied by the network at time
t and its initial volume. We will discuss our numerical re-
sults for the solvent uptake in the next section. Here we
note that Egs. (12) and (13) imply that M (z) scales as ¢ /2
at short times. Indeed consider the case of a semi-infinite
network which is initially unswollen and located on the
left of the origin. Equation (13) can be rewritten as an or-
dinary differential equation with respect to the variable
N=x,/(2t'"?) (Boltzmann transformation) [22], so that
the solutions ¢ (x,,?) of the equation depend on x and ¢
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only through 7. Therefore using (12) we find for the sol-
vent uptake

¢s(xo:t)
= [ dxog o

:2t1/2f_ dnf(n)o(tl/l’ (14)

M(t)=xgx(xy=

where f(7) is a function of 1 only. At short times the
concentration profile ¢ at either one of the two edges of
a finite specimen is the same as the profile at the edge of a
semi-infinite network; therefore M (¢)<t!/2. The same
argument can be given for different boundary conditions.
Experiments have been devised [28] where swelling is
constrained to one dimension. However, it is clear that
in order to interpret these experiments correctly the
effect of the constraint has to be accounted for; the equa-
tion given above does not necessarily provide a good
model for such situations. Indeed the simplest experi-
ments to perform and interpret involve unconstrained
swelling of a three-dimensional specimen. The problems
encountered when one tries to extend the treatment given
above to an arbitrary 3D geometry are discussed in Sec.
IV. However, in the special case of a three-dimensional

(a) 1 T
11 I —
(b) 1 i
(c) } 1
(d) + 1
(e) !
FIG. 1. Our procedure to obtain the time evolution of the

polymer concentration profile is illustrated. Solutions [¢z(x,?)
vs xo] of Eq. (13) for an elastomer which is deswelling from an
initial concentration ®%=0.4 to a final concentration
®EV=0.8 are shown on the left at times (a) ¢ =0, (b) ¢t =0.032,
(c) +=0.316, (d) +=1.0, and (e) t=100.0; we take Dy =1,
ay=1. The corresponding polymer concentration profiles, i.e.,
¢r(x,t) vs x, are shown on the right; they are found using Eq.
(12) to transform back to x =xz(x¢,1).
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spherically symmetric geometry the argument leading to
Eq. (9) can be repeated step by step and it leads to the
equation

dbs(rr,t) _ dplrg,t) | 3bs(rg,t)
ot N r3 drg D(¢siri arg
(15)

Again it is convenient to perform a coordinate trans-
formation from the ‘“running” coordinate rz to the La-
grangian coordinate r,. It is easy to see that at a time
t >0 the radial position rg(7y,t) of an infinitesimal shell
of polymeric material which initially was located at r =r
is

o 2
ri(ro,t)=3 o_rodro (16)
0 ¢rlry,t)
This equation is the analog of Eq. (12): the difference be-
tween the three-dimensional and the one-dimensional
case is that the relation between dryp and dr, involves ry
explicitly, i.e., it is a nonlocal function of ¢z (ry,7). As a
result the differential equation for ¢y (rg, ) is also nonlo-
cal [29]: using (15) and (16) we obtain

I _ 2rp¢z D ($r) rROR G
— 2__
ot r% rg aro
ridk [3(6xD(4r) [0y |°
rg a¢R aro
82
+¢RD(¢R)L5 (17)
arg

This equation can be dealt with using the same numerical
methods employed to solve Eq. (13). The computational
procedure is somewhat more involved, however, since
powers of rg appear explicitly in Eq. (17) so that an addi-
tional set of quadratures is required at each time step.
Figures 2 and 3 show results obtained from this pro-
cedure for the concentration profiles of polymeric materi-
al in the case of a sphere which is swelling to eight times
its original size (so that its radius is doubled): we have
used D,,=1 in Fig. 2 and DM=Doea¢S with Dy=1 and
a=6 in Fig. 3 [30,31].

We conclude this section by commenting briefly on the
two assumptions stated at the beginning, which are at the
basis of our treatment. It has been shown above that, as
long as the swelling process can be described in terms of a
single space coordinate, these assumptions allow a simple
consistent description of the swelling kinetics in terms of
a minimum number of phenomenological parameters,
namely the equilibrium polymer concentration ®§% and
the constants entering the diffusion coefficient.

In kinetic models where mixing of two incompressible
fluids of small molecular weight occurs as a result of local
random motions, Fick’s law can be seen to arise from
very general probabilistic considerations. In polymeric
systems deviations of experimental results from naive
predictions based on Fick’s law are usually found when
mixing between the polymer and solvent component is
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FIG. 2. Polymer concentration profiles ¢g(r,t) vs r for a
sphere (of initial radius » =1) swelling to a final concentration
PRY=0.125 (i.e., to a final radius » =2) are shown at times (a)
t =0.005, (b) t =0.05, (c) t =0.2, and (d) t =1.0. We have tak-
en DM =1.

accompanied by physical phenomena involving some
change in the state of the polymer, the standard example
being plasticization (i.e., lowering of the glass transition
temperature) in the case of polymer glasses [32,33]. Devi-
ations from ordinary Fick’s behavior may also occur in
the dissolution of a polymer melt or of a semidilute solu-
tion where the disappearance of the transient network is
controlled by the reptation disengagement time [34]. For
networks which are not very tightly cross linked and
rubbers well above the glass transition temperature, there
seems to be no obvious effect of this type; under these

¢R(r’t)

0.0 0.5 1.0 1.5 2.0
r

FIG. 3. Polymer concentration profiles ¢g(7,2) vs r for a
sphere (of initial radius r =1) swelling to a final concentration
P%Y=0.125 (i.e., to a final radius » =2) are shown at times (a)
t =0.0005, (b) t =0.0025, (c) t =0.005, and (d) r =0.0075; we
have taken D,, =Dge*S with Dy=1 and a=6.
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conditions, corrections to Fick’s expression for the flux
may arise only due to elastic forces between portions of
the network which are swollen to a different extent. In
loose networks, it seems reasonable to expect these
corrections to be small: our treatment corresponds to the
limit where such corrections vanish altogether.

Our second assumption on the instantaneous onset of
equilibrium at the boundary of the region where polymer
is present is the simplest within a continuum description.
In practice, a finite time is needed for a small volume ele-
ment of network at the surface of the polymer specimen
to respond to a change in the activity of the solvent. In
fact, it can be argued that equilibrium is not reached at
the surface until the elastic constraints exerted by the
unswollen portions of network located under it become
completely negligible. Since modeling these effects would
introduce additional phenomenological parameters, it
seems reasonable to adopt the second assumption as a
working hypothesis. Indeed, the ultimate test for the va-
lidity of both our assumptions resides in how well the re-
sults of our treatment can match experimental data. We
shall see in the next section that, since our treatment sets
rather severe requirements on the form of the swelling
and deswelling curves for the solvent uptake, a first ex-
perimental test of our assumptions may be obtained from
simple sorption experiments [31].

III. RESULTS OF THE METHOD

In general, in a binary system made up of cross-linked
polymer chains and solvent it seems reasonable to expect
that the mutual diffusion coefficient will increase mono-
tonically as a function of solvent concentration [35]. This
is because as the concentration of solvent is increased it
becomes possible for more and more local movements (of
solvent molecules or of polymer chain segments) to take
place without causing rearrangement of (heavily con-
strained) chain segments but rather by displacing small
mobile solvent molecules.

In physical situations which can be accounted for by
ordinary diffusion within fixed boundaries (for example,
vapor diffusing into a rigid porous material), if the
diffusion coefficient is independent of concentration, sorp-
tion and desorption take place at the same rate, i.e., the
plots of weight uptake and weight loss versus time coin-
cide. On the other hand, a diffusion coefficient increasing
monotonically with penetrant concentration implies that
sorption occurs faster than desorption [36]. This is be-
cause the boundary concentration is larger in the case of
sorption and this in turn leads to a larger diffusion
coefficient and a larger flux.

Similar considerations apply to our equations. Howev-
er, in addition to any concentration dependence of D,,,
there are now effects from the nonlinear terms [see Eqgs.
(13) and (17)] which account for movement of the boun-
daries. Moreover, in three dimensions, the fact that the
area of the polymer occupied region is changing plays a
role in determining the rate of sorption (or desorption).
For example, the surface of a sphere which is swelling to
a final equilibrium concentration ®%% will increase in the
process by a factor (@) ~2/3; therefore, even if the flux
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(referred to unit area) of solvent through the surface is
largest at the initial stages of swelling, the surface of the
final swollen sphere may have become large enough to
offset any reduction in flux due to nonlinear effects when
deswelling begins.

The net result of all these factors is that, when the mu-
tual diffusion coefficient D,, is constant, our equations
predict that deswelling will invariably occur at a rate fas-
ter than swelling, whereas for a concentration dependent
D, the result is determined by the competition between
the effects described above. Figures 4 and 5 illustrate
how, when the final solvent concentration is small
(P9 ~1), the dependence of D,, on concentration can
reverse the relative rate of swelling versus deswelling. On
the other hand, if the final solvent concentration is large,
our equations predict that initially deswelling will occur
faster than swelling even if the diffusion coefficient in-
creases substantially with solvent concentration [37].
This behavior is illustrated in Figs. 6 and 7 for the case of
a spherical geometry; the same qualitative behavior is
found for the solutions of the one-dimensional problem.

In the case of ordinary (fixed boundaries) diffusion, the
plot of weight gain (or loss) versus ¢!/2 starts as a straight
line at t—0 and eventually flattens to the equilibrium
value. The rate of increase in weight gain (or loss) (e.g.,
the first derivative with respect to ¢!/2) is largest at ¢ =0.
Since this result holds independently of the functional
form of the diffusion coefficient, such a weight uptake
curve has been generally regarded as a signature of Ficki-
an diffusion. On the other hand weight uptake curves
displaying an inflexion point with respect to z!/? (sig-
moidal uptake) have been interpreted as evidence for
anomalous diffusion and non-Fickian behavior [38].

0.15 I

0.05 - i

0.00 | : . :
0.0 0.3 0.6 0.9 1.2

Vi

FIG. 4. Solvent uptake (solid curves) or loss (broken curves)
vs t'72. The curves refer to the one-dimensional case for a final
concentration ®%¥=0.9. The two lower curves were obtained
taking D), =1, while for the two upper curves we used
Dy =Doe"’s with Do=1and a=6.
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FIG. 5. Solvent uptake (solid curves) or loss (broken curves)
vs t!72 for a sphere (of initial radius » =1) swelling to a final
concentration ®§%=0.9. The two lower curves refer to D, =1,
while the two upper curves refer to DM=D0ea¢S with Dy=1
and a=6.

However, as the solid curves of Fig. 6 show, sigmoidal
uptake is displayed by our results obtained from Eq. (17)
in the case of high final solvent concentration [39], in
spite of the fact that we have used Fick’s law as one of
the central ingredients of our treatment. While we are
not suggesting that this is always the mechanism respon-

40.0 +—— . .
1 R <3
30.0 b.d o f - L
s e a
] 1" i
—~ :’ ;' )/
H l‘ II ’,
‘-’2 20,01 /// L
1,
I’ I‘ l’
g
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10.0 4 F
11
b
"
0.0 : .
0.0 0.5 1.0 1.5

Vit

FIG. 6. Solvent uptake (solid curves) or loss (broken curves)
vs t!/2 for a sphere (of initial radius » =1) swelling to a final
concentration ®§9=0.1. Curves @ and b are for D, =1.
Curves ¢ and d are for Dy, =D0ea¢s with D,=0.328 and a=3.
Curves e and f are for D,, =D0ea¢s with D;=0.101 and a=6.
For a=3 and 6, D, was chosen so as to match the initial uptake
in curve a (see text).

FIG. 7. Solvent uptake (solid curves) or loss (broken curves)
vs t'/2 for a sphere (of initial radius » =1) swelling to a final
concentration ®%¥=0.5. Curves a and b are for Dy =1.
Curves ¢ and d are for Dy, =D0ea¢s with D;=0.327 and a=6.
For a=6, D, was chosen so as to match the initial uptake in
curve a (see text).

sible for sigmoidal behavior, our results indicate that it is
the nonlinearity associated to the presence of moving
boundaries, rather than some violation of Fick’s law,
which is at the origin of sigmoidal uptake curves for swel-
ling networks.

A second feature usually considered as an indication of
non-Fickian behavior is the observation of a desorption
curve intersecting the sorption curve at some finite time
[38]. Again this feature is displayed by our results for
certain ranges of the final equilibrium concentration ®¥9
and of the concentration dependence in the diffusion
coefficient. Examples of this behavior are shown in curves
e and f of Fig. 6 and in curves c and d of Fig. 7.

It might also be worth noting at this point that, in spite
of our use of Fick’s law, a sizeable concentration depen-
dence in the diffusion coefficient leads to concentration
profiles exhibiting rather sharp drops in concentration
(see Fig. 3). Although clearly of a different origin, this
behavior is somewhat reminiscent of the sharp diffusion
fronts observed in polymeric glasses when so-called “case
II” diffusion takes place [32,33].

As we have remarked at the end of the preceding sec-
tion the ultimate test for the physical assumptions which
are at the basis of our treatment consists in examining its
agreement with experiments. Probably, the simplest ex-
perimental test consists in a comparison between sorption

(or desorption) curves obtained for spherical specimens
(in the absence of pattern formation) and our predictions
for solvent uptake (or loss). It should be clear from the
results shown in Fig. 6 that, once the final equilibrium
concentration ®§? has been fixed, our predictions are
quite insensitive to the form of the diffusion coefficient:
for example, although in curve a of Fig. 6 the diffusion
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coefficient has been taken to be a constant and in curve e
of Fig. 6 it changes by more than two orders of magni-
tude over the relevant concentration range, the two
curves nearly coincide in a large portion of the ¢!/2
domain (a similar behavior is displayed by curves a and ¢
of Fig. 7). As a result, it is essentially impossible to fit an
experimental sorption curve by fine tuning the form of
the diffusion coefficient, unless it falls within the narrow
range predicted by our solutions; therefore, the compar-
ison of sorption data with our results should provide a
quantitative test for our assumptions [31].

It should be noted in this respect that there has been
some confusion in the literature [40] as to what consti-
tutes a satisfactory test for a description of the kinetics of
swelling. In particular, we note that neither the observa-
tion that swelling time is proportional to the square of
the linear dimensions of the specimen nor the fact that
the approach to equilibrium is exponential can be viewed
as such a test. The first result is true for any governing
equations which involve first derivatives with respect to
time and second derivatives (or square gradients) with
respect to position. The second is a very general result
altogether independent of the details of the theory. Both
these requirements are trivially satisfied by our treatment
[41].

IV. DISCUSSION

Underlying the treatment put forward in the preceding
sections is a picture of the swelling process where both
the network and the solvent behave as incompressible
fluids of small molecular weight except for the fact that
convection is forbidden. Changes in the local amount of
each component are controlled by Fick’s law and in par-
ticular it is assumed that any elastic reaction which the
network may offer to an increase in the local amount of
solvent is adequately accounted for by the dependence of
the diffusion coefficient on local concentration.

Using such a framework, we have been able to obtain a
number of new results which may be of considerable
value in interpreting experimental data, even though we
have confined ourselves to problems which can be dealt
with in terms of a single space coordinate. It is clear,
however, that in order to carry forward the program de-
scribed in the Introduction, and in particular to deal with
the issues of surface pattern formation and of the onset of
fracture, it is necessary to attack the full two- and three-
dimensional problems. For example, performing a linear
stability analysis requires a study of how perturbations
from a radially symmetric geometry evolve in time.

Consider the case of a network of arbitrary shape
which is swelling from the dry state: one can imagine the
network as divided in a collection of domains; the boun-
daries between these domains play the role of the markers
introduced in Sec. II for the one-dimensional problem
(see also Ref. [20]). A procedure to extend the frame-
work described above to this problem requires that at
each time step the evolution should be consistent with the
following prescriptions: (i) the amount of solvent in each
domain should be allowed to change as prescribed by
Fick’s law: this operation fixes the new volume for each
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domain; and (ii) the shape of each domain should be
changed in such a way to match the strain at the boun-
daries between neighboring domains and to make the
outer surface of the specimen stress free.

Quite apart from the question of whether the above
prescriptions are sufficient to determine the shape of the
concentration profiles in a unique way, several problems
are encountered when one attempts to implement such a
program. In particular, one needs to solve at each time
step a set of elasticity problems involving large deforma-
tions in situations where inhomogeneous strains are
present. The theory of elasticity for large deformations
(i.e., for non-Hookean materials) has been worked out in
detail for the case of homogeneous strains [42], but there
seems to be no general prescription allowing one to at-
tack problems of this kind involving nonhomogeneous
strains. In other words, for these materials there seems to
be no procedure which allows one to solve for a general
strain under general boundary conditions in the same
way as is done [43] for a material obeying Hooke’s law.
Even assuming that one confines himself to situations in-
volving small swelling ratios, so that Hooke’s law can be
applied, the problem of obtaining closed-form equations
obeying the prescription given above remains a formid-
able one.

It is important to realize that the geometry of the
specimen plays a special role in this problem and is essen-
tial in determining the shape of the sorption and desorp-
tion curves. Consider, for example, a thin rubber film:
although one of the dimensions is much smaller than the
other two, it is not permissible to treat this as a one-
dimensional problem (with some end effect corrections).
Indeed, one should expect that the final state will be a
swollen film whose dimensions are all increased by the
same amount (uniform affine deformation). On the other
hand, it is clear that at the initial stages of swelling, when
only the surface of the film is exposed to solvent, an affine
deformation of the exposed part cannot occur without
fracture of the sample. Therefore, in order to reach the
final uniform affine deformation, elastic constraints from
the unswollen portion must force the film to first swell
mainly in the direction perpendicular to the plane of the
film (surface instabilities may occur at this stage) and
then gradually to rearrange to the final uniformly swollen
state. It is natural to expect that the shape of the sorp-
tion curve is affected by the combination of these process-
es. These effects are by definition absent in the one-
dimensional problem; however, they may play a role in
the spherically symmetric case in the form of contribu-
tions to the flux coming from elastic forces between swol-
len and unswollen shells. These effects are neglected in
the treatment given in Sec. II; nevertheless, the concen-
tration dependence of the diffusion coefficient may ac-
count for such processes in some effective way.

In practice, one has often to deal with networks which
are adhesively bonded to a rigid substrate or which are
constrained in some other fashion [1,2,6-8]: indeed, the
first example of surface instability [14] was observed in
such a system. For a constrained network, the final equi-
librium concentration is ordinarily nonuniform in the po-
lymer occupied region, so that even for the spherically
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symmetric problem our equations and boundary condi-
tions have to be modified in such a way to reproduce the
final concentration profile. A similar situation (final
nonuniform penetrant profile) is encountered in the case
of ordinary (fixed boundary) diffusion taking place in the
presence of an external potential [44]. Therefore, it
seems that a reasonable way to account for such a situa-
tion is by introducing an ad hoc external potential which
describes the effect of the constraint. This potential is
chosen in such a way to reproduce the final concentration
profile, which should be known a priori from equilibrium
calculations [45].

In spite of the difficulties encountered in extending our
treatment to a general three-dimensional geometry, we
believe that further investigations towards this goal may
well be worthwhile. The approach described here allows
a direct description in terms of experimentally measur-
able material or system parameters and it should predict
the conditions for surface instability and fracture in a
given system in terms of such parameters. In this
respect, we note that some recent studies [46,47] have ex-
amined the conditions for surface pattern formation in a
swelling gel by introducing mechanical models (networks
of springs) which mimic the microscopic structure of the
polymer network. While these models are useful in
pointing to physical situations which reproduce the quali-
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tative features of pattern formation and growth, it is
difficult to interpret the parameters appearing in these
models in terms of measurable quantities in actual sys-
tems.

We conclude observing that, although the treatment
discussed in this paper was developed to deal with the
specific problem of swelling in elastomeric materials and
polymeric gels, the macroscopic equations that we have
obtained depend on the detailed molecular structure of
these materials only insofar as this microscopic structure
ensures that the physical requirements on which our
treatment is based are satisfied. These requirements (ab-
sence of convection, diffusion described by Fick’s law,
volume unchanged upon mixing, and instantaneous onset
of equilibrium at the boundaries) may be satisfied in sys-
tems whose molecular features are very different from
those of a polymer network and we expect our macro-
scopic equations to be useful in describing transport pro-
cesses in such systems.
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